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Abstract. Near-inertial waves (NIWs), i.e. inertia-gravity waves with a frequency close to f ,
account for about half of the wave energy in the ocean. Forced mainly by winds, NIWs are
ubiquitous in the oceans, superimposed over balanced currents. While NIWs have a strongly
depth-dependent structure, the balanced flow is more often vertically uniform over a few
hundreds of meters. It is unclear whether NIWs exchange energy with the balanced flow, thus
influencing the oceanic circulation. Using a two-layer shallow-water model, we investigate this
question. We compare our results with those from Xie & Vanneste (2015), which highlights
energy transfers from the balanced flow to NIWs potential energy when the length scale of
NIWs reduces. We perform the same numerical experiment they did, where NIWs evolve over
a depth-independent vorticity dipole. An important difference with our two-layer model is the
interface deformation field between the two layers, and how it affects the kinetic energy budget,
sometimes playing an intermediary role in the transfer of energy from the balanced flow to
NIWs. We also conduct simulations with a turbulent background flow and a stratification
typical of the mid-latitudes. Like Xie & Vanneste (2015), we find that as long as the NIW
scale is decreasing because of advection and refraction by the background flow, the wave
potential energy is increasing. Moreover, we are able write down a compact expression for the
energy transfer from the balanced flow to NIWs. This expression depends on the unbalanced,
fast-timescale part of the baroclinic potential vorticity.

L’impact des ondes quasi-inertielles sur le courant en équilibre

Résumé. Les ondes quasi-inertielles (OQI), c’est-à-dire des ondes d’inertie-gravité dont la
fréquence diffère peu de f , constituent environ la moitié de l’énergie des vagues dans l’océan.
Principalement générées par le vent, les OQI sont omniprésentes dans les océans, superposées
à des courants en équilibre. Tandis que les OQI présentent une structure qui varie rapidement
le long de l’axe vertical, les courants en équilibre sont plus généralement indépendants de
la profondeur. Il n’est pas encore bien compris si les OQI échangent de l’énergie avec les
courants en équilibre et influencent la circulation océanique. À l’aide d’un modèle Saint-
Venant à deux couches, nous nous penchons sur cette question. Nous comparons nos résultats
à ceux de Xie & Vanneste (2015), qui montrent un transfert d’énergie depuis du courant en
équilibre vers l’énergie potentielle des OQI lorsque l’échelle spatiale des ondes rapetisse. Nous
réalisons lamême expérience numérique qu’eux où des OQI évoluent dans un vortex dipolaire.
Une différence importante de notre modèle réside dans l’interface entre les deux couches, et
comment cette déformation change le bilan d’énergie cinétique, jouant parfois le rôle d’un
intermédiaire dans le transfert d’énergie vers les ondes. Nous réalisons aussi des simulations
avec un champ turbulent en tant qu’écoulement en équilibre et une stratification typique des
latitudes moyennes. Comme Xie & Vanneste (2015), nous constatons que l’énergie potentielle
des ondes augmente quand l’échelle spatiale desOQI diminue sous l’effet de l’advection et de la
réfraction du courant d’arrière-plan. De plus, nous arrivons à écrire, à l’aide d’une expression
compacte, comment l’énergie passe du courant en équilibre aux ondes. Cette expression
dépend de la partie à haute fréquence du tourbillonnement potentiel barocline.
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Chapter 1

Introduction

Compared with Earth’s radius, the ocean is very thin. Covering a basketball with aluminum
foil will give the same ratio of thickness over diameter. In this fine layer evolve all currents,
from the powerful Agulhas off the tip of Southern Africa to deep convection in Labrador sea.
A panoply of waves also propagate into this near two-dimensional water mass.

A major feature of Earth is, of course, that it is rotating. Ocean dynamics are therefore
qualitatively different from what one would expect to find in his kitchen sink. A dominant
force is, in a geophysical context, the Coriolis force. This acceleration is only felt within the
rotating reference frame. When the pressure gradient and the Coriolis are of equal magnitudes
and in opposite directions, a geostrophically balanced flow results.

If no force is balancing Coriolis, the fluid will accelerate. However, this acceleration is
perpendicular to the motion of the water parcel, and energy is conserved. This kind of circular
motion is called an inertial oscillation. After an inertial period, the water parcel has completed
a loop and is back to its initial location, if no other force are at play.

Superimposed over geostrophic currents and inertial oscillations are gravity waves. Gener-
ally, the restoring force acts strongly, and so the period of those gravitywaves is short compared
with an inertial period. "Inertia-gravity wave" (IGWs) is a more general name for any wave
that is affected by both the referential rotation and gravity. The frequency of these waves is
between f , the Coriolis frequency (lower boundary), and N , the buoyancy frequency (upper
boundary). In most oceanic conditions, energy is concentrated in the near-inertial band of the
spectrum.

1.1 One-layer system

A simple system containing all of the aforementioned physical phenomena is the linearized
shallow-water equations. This set of equations, valid for a thin incompressible fluid, goes like
this:

ut � − f ẑ × u − g∇η, (1.1)

ηt � −H∇ · u , (1.2)

5
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The subscript t represents a temporal derivative, u is the velocity vector, η is the surface
deformation, f is the Coriolis frequency, ∇ is the horizontal gradient operator, g is the gravity
acceleration and H is the layer thickness.

Within this simple model, the basic dynamics of the ocean are present:

geostrophic balance f ẑ × u � −g∇η, (1.3)

inertial waves ηtt � − f 2η, (1.4)

gravity waves ηtt � gH∇2η. (1.5)

We will now derive Poincaré waves, i.e. IGWs in a one-layer flow. First of all, we take
the divergence of ut . We then put it into the mass conservation equation, of which we had
previously taken the time derivative:

ηtt � gH∇2η − f Hζ. (1.6)

ζ � vx − uy is the relative vorticity (subscripts are here derivatives). We now need a way to
express ζ as a function of η in order to close the wave equation. If we take the curl of ut , we
find

ζt + f δ � 0, (1.7)

where δ is the divergence ux + vy . Plugging in the conservation equation, we get

ζt �
f

H ηt �⇒ ζ �
f

H η + constant. (1.8)

The integration constant is zero because far away fromall surface deformation, the velocities are
uniform and therefore ζ � 0. We now assume that a plane-wave solution η ∼ exp (iωt − ik · x)
can satisfy the updated equation (1.6),

ηtt � gH∇2η − f 2η. (1.9)

We then find the Poincaré wave dispersion relation:

ω2
� f 2 + c2κ2 , (1.10)

where c2 � gH and κ is the norm of the horizontal wavevector.

The two roots of ω corresponds to two eigenvalues, for each wave vector k. These two
eigenvectors, named W+ and W−, in addition to the geostrophic balance, describe completely
the flow. The frequency associated with the geostrophic mode, labeled G, is zero, as it does not
depend on time. W+(k), W−(k) and G(k) form a complete basis for any flow in the context of
the linear shallow-water equations. A detailed derivation of this decomposition will be given
in section 2.4.
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Figure 1: Drifter tracks exhibiting a near-inertial motion. Figure adapted from D’Asaro et al.
(1995).

1.2 Near-inertial waves

The focus of this study is near-inertial waves (NIWs). NIWs are characterized, according to
Alford et al. (2016), by a frequency between f and 1.2 f and by a characteristic scale of 10-100
km. Figure 1 shows drifter trajectories in a NIWs field, following the passage a storm. The
tracks describe rotational motions, advected over the domain by a slower current. This figure
shows with clarity that waves are superposed over the mesoscale oceanic circulation.

According to many observational studies, there is a tendency for energy to pile up in the
near-inertial (NI) band of the wave spectrum (e.g. figure 2). A few mechanisms account for
the accumulation of energy in the NI band: interactions between geostrophic currents and the
bottom topography (Nikurashin and Ferrari, 2010), resonant interactions with tides at specific
latitudes (Young et al., 2008), nonlinear interactions between geostrophic currents and NIWs
(Gertz and Straub, 2009; Xie and Vanneste, 2015), and most importantly, forcing by wind.

Fluctuations in time and space of the wind forcing on the water surface generate NIWs.
Resonance with f k̂ × u in the momentum equation is one reason why NIWs are dominant
in the wave spectrum. Many wind events contain energy at the resonant frequency, namely
hurricanes, storms and even diurnal breezes near land at 30° latitude. These forcings are
usually of large spatial extent, e.g. synoptic scale of O(1000 km), whereas the ocean mesoscale
is much smaller with O(30 km).

1.3 Scale reduction and capture by anti-cyclones

Notice thatNIWs are forced at large scale, whereas observations show they exist predominantly
at smaller scales. There has to be mechanisms that stretch, refract, break apart and globally re-
duce NIWs scale. The planetary vorticity gradient (β-effect) and the the mesoscale background
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Figure 2: Rotary velocity spectrum at a depth of 261 m. W+ is the clockwise energy and W−

the counterclockwise energy. WESTPAC1 experiment, figure from Alford et al. (2016).

flow play this role.

The planetary vorticity can be approximated as f � f0 + βy. With the consideration of β,
the inertial frequency varies with latitude. Suppose that a large synoptic event impinges an
uniform velocity to water on a surface spanning a thousand kilometers along the meridional
direction. Waves at the southern and northern limits of the domain would oscillate at their
local inertial frequencies, which are f0 and f0 + β(106 m). The phase difference between both
locations is then β(106 m)(t − t0). With typical parameters for mid-latitudes ( f0 � 10−4 s−1 and
β � 2 × 10−11 m−1s−1), a difference of π in phase is reached after about 2 inertial periods. This
phase difference reduces the effective wavelength of the inertial oscillations, because velocities
at the northern and southern limits of the domain are now in opposite directions.

The impact of the background flow on the spatial distribution of NIWs has been carefully
studied. Following observations by Kunze and Sanford (1984), Kunze (1985) proposed a
mechanism using a Wentzel–Kramers–Brillouin (WKB) ray-tracing approach. He postulated
an unchanging background current over which are superimposed NIWs. The vorticity of
the background flow would add up to the planetary vorticity and make up a new effective
inertial frequency feff � f + 1

2ζ. WKB theory then postulates that each wavelet conserves
its characteristic frequency, and so each one would be refracted towards regions of negative
vorticity. The explanation is analogous to light propagating in a medium of non-uniform
refraction index. NIWs are trapped inside anticyclones and expelled from cyclones. Through
this refraction mechanism, NIWs are shrunk to the size of the background vorticity smaller
features, and even smaller.

An import caveat of Kunze (1985)’s explanation is that WKB theory requires the spatial
variations in the wave phase to be much smaller than its wavelength, and this is not true
for the refraction of large scale NIWs by smaller scale features in the background vorticity.
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Nonetheless, the theory gives useful intuition as to how the mesoscale field distorts NIWs and
brings them to smaller scales.

1.4 Young and Ben Jelloul model

A few years later, Young and Ben Jelloul (1997) (hereafter YBJ) built a new framework to explain
howNIWspropagate through a geostrophic flow. Their theory necessitates a clear-cut timescale
separation between waves and background flow, but no spatial scale separation is needed. The
basic idea is that they average out inertial waves and keep only a slowly-evolving envelope.
Like Kunze (1985), they find a refraction term stemming from the mixed wave-background
advection [u · ∇]U of the momentum, where U is the background velocity and u is the wave
velocity. Their framework has an energy conservation law that makes impossible any energy
transfer between waves and the geostrophic flow.

YBJ’s framework has different versions, andwewill now get a sense of it using the reduced-
gravity shallow-water system presented in Danioux et al. (2015). They start with the shallow-
water equations linearized about a barotropic base state (U,V) � (u , v). They assume a weak
and static background flow (small Ro) and waves oscillating at a frequency close to f0 (small
Burger number). They rewrite the shallow-water system using (u + iv) as a variable and keep
only the leading order solution, the small parameter being ε ∼ Ro ∼ Bu. After some algebra,
they are only left with the slow evolution of NIWs, reading

Mt � −J(ψ,M) +
i f0L2

d

2
∇
2M −

i∇2ψ
2

M, (1.11)

where M � (u + iv)e−i f0t . (1.12)

M is the complex wave amplitude, J is the Jacobian, ψ is the barotropic streamfunction and Ld

is the relevant deformation radius (see section 2.1). On the right-hand side of equation 1.11,
one can recognize three terms acting on NIWs: advection by the background flow, dispersion
due to stratification, and refraction by the background vorticity. This last term is responsible
for the cascade to smaller scale of the NI field. We will look more closely at its construction.

We will express the background flow using U � (−ψy , ψx) and the wave field with U �

u + iv. Therefore,

u �
U + U ∗

2
, v �

U −U ∗

2i
, (1.13)

where the asterisk denotes a complex conjugate. The momentum equation they use is the
following:

ut � − f ẑ × u − [U · ∇]u − [u · ∇]U − g′∇η. (1.14)

Refraction by the background vorticity, our current focus of interest, is caused by the third term
on the right-hand side of the last expression, so we will only keep this term. If we replace U

and u by ψ and U , we are left with

Ut � −
i
2
U ∇2ψ + U ∗

(
ψx y +

i
2
ψxx −

i
2
ψy y

)
(1.15)
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The important thing to notice here is that U ∗ is out of phase with the rest of the equation. For
example, using U � Mei f0t and dividing the resulting equation by ei f0t , one finds

−i f0M � −
i
2

M∇2ψ + e−2i f0t M∗

(
ψx y +

i
2
ψxx −

i
2
ψy y

)
. (1.16)

The rightmost part of the equation is off-resonant and this is why it does not appear in Danioux
et al. (2015) nor in our equation (1.11). Thefirst termon the right-hand side of the last expression,
−

i
2M∇2ψ, is the refraction term in (1.11).

1.5 Energy transfers

Gertz and Straub (2009) gave a first look at the problem of energy transfer between a depth-
independent flow and inertial waves. They used an unstratified model to study how mid-
latitude gyres are interacting with three-dimensional modes. It appears that inertial waves
provide a sink of energy for the gyres. Energy is extracted from the balanced flow and low
wavenumber and then cascades to smaller scales as inertial waves, before getting dissipated by
hyperviscosity.

Taylor and Straub (2016) brought the investigation furtherwith a primitive equation simula-
tion of a stratified flow. They force a flow in channel with both high- and low-frequency winds.
Fast NIWs exert Reynolds stresses on the slow flow and act as an energy sink. In particular, a
term coined "advective sink" in the low-frequency kinetic energy evolution is responsible for
the transfers:

χ � −Uslow · ((u · ∇ + w ẑ∂z)u)slow , (1.17)

where u and w are the fast horizontal and vertical velocities. A similar term also is found
in the potential energy evolution equation. These transfers take place predominantly in the
mesoscale.

Xie and Vanneste (2015) (hereafter XV) also let the background flow interact with NIWs in
a YBJ-like framework. Within the weak-ζ and weak-stratification regime, they build a coupled
model that, when the background velocity is quasi-geostrophic (QG), reduces to the YBJ’s wave
equation alongside a modified potential vorticity (PV) inversion equation.

Their starting point is a Lagrangian equivalent to the Boussinesq system. They then ex-
press that Lagrangian as a function of a mean-flow map, i.e. with coordinates following the
background current. They afterwards keep the largest terms, according to an expansion with
regards to Ro and Bu. They are then able to compute the equations of motions using La-
grange’s equations. Finally, they assume that the background flow is QG, thus allowing some
simplification. They end up with a modified PV inversion equation1:

qt � −J(ψ, q), (1.18)

where q � ∇
2ψ + i

2 f0
J(M∗ ,M) + 1

4 f0
∇
2
|M |2. (1.19)

1In fact, this is the special version of q where a barotropic flow is considered, as in equation (6.5) of XV. This
version will be relevant to the numerical problems we will look at.
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The time-evolution equation for M is equation 1.11. Notice that quadratic wave terms impact
the relation between q and ζ, and in turn, the value of ψ. The model conserves the total energy,
as well as the wave action – equal to the wave kinetic energy divided by f0. The wave action
conservation stems from the symmetry of the Lagrangian to the phase of the waves. As long
as the wave amplitude and frequency vary slowly in time and space, the Lagrangian does not
depend on the phases and Noether’s theorem can be used to derive the action conservation
law (Salmon, 1998; Goldstein, 1965). Therefore, wave kinetic energy is conserved in the XV
framework.

We can easily relate M and q with u and U . Therefore, energy components are

background kinetic Eψ �
1
2

∫
|∇ψ |2 ds , (1.20)

wave kinetic EW
kin �

1
2

∫
|M |2 ds � constant, (1.21)

wave potential EW
pot �

1
4

∫
L2

d |∇M |2 ds , (1.22)

where ds is a surface element.
Recall that the NIW scale reduces when waves are refracted by a background current.

Therefore, |∇M |2 will increase as the wave scale reduces and the wave potential energy will go
up. Since the total energy is conserved, this new potential energy has to come from somewhere
else. Because the wave kinetic energy is fixed, we conclude the new energy is delivered from
the balanced flow. XV call that mechanism "stimulated wave generation."

This leads us to the principal question of this thesis: will a model explicitly resolvingNIWs
exhibit the same energy transfer from the balanced flow to the waves? Because using the
full Navier-Stokes equations would be technically difficult, we will take advantage of the
thin aspect ratio of NIWs and work with a two-layer shallow-water model. The simplicity
of this system will allow us to explain the mechanism with a dynamical description, and
not only rely on an energy budget argument. We will explore the regime of XV, at low Ro
and low Bu, but will also go further.

The question of energy transfers between waves and a geostrophic current is an im-
portant one, with climatic implications. According to reanalysis studies, about half of the
wind work exerted on the ocean occurs in the inertial band (Alford, 2003). The mecha-
nism we are looking for in our idealized set-up could give an interesting insight on the
more general problem of the energy transfer of high-frequency motion in the ocean to the
balanced, slowly-evolving currents.





Chapter 2

The two-layer shallow-water model

2.1 Barotropic and baroclinic modes

The Poincaré waves introduced earlier evolve on a two-dimensional plane. Even though we
want toworkwith a simplemodel, a one-layermodel is not a good tool to study energy transfers
between a vertically-uniform background flow and NIWs. The vertical scale of NIWs is about
100-300meters (Leaman and Sanford, 1975)while the thickness of a typical background current,
say the Gulf Stream, is about 1000 m (Stommel, 1958). We will therefore use a model with two
layers of equal thickness, for a total depth of 1000 meters in most runs. The two layers are
immiscible and of different densities.

If a one-layer model exhibits waves deforming the surface η1, a two-layer model also allows
waves on the interface η2 between the two layers. Following Gill (1982), we can describe the
flow with two independent vertical modes, called the barotropic (sum of the two layers) and
baroclinic (difference of the two layers) modes. Waves traveling on each of these modes have
their specific phase speed ci :

c0 �
√

gH ' 100m/s for the barotropic mode, (2.1)

c1 �
√

g′He ' 3m/s for the baroclinic mode, (2.2)

where g′ � g∆ρ/ρ0 is the reduced gravity (2.3)

and He � H1H2/H is the equivalent height. (2.4)

We used H � 1000 m and ∆ρ/ρ0 ∼ 0.003, a typical value in the ocean according to Gill (1982).
Not only would the barotropic waves cause a computational problem because of their high
speed, but also their impact on the dynamics is thought to be small. Because deformation of the
surface is small when the barotropic flow features are smaller than the barotropic deformation
radius (' 1000 km), we can apply the "rigid-lid approximation" on η1 and ignore the barotropic
gravity waves.

From now on, c will only refer to the baroclinic phase velocity. If fact, we will mostly talk
in terms of the deformation radius Ld , defined as

L2
d ≡

g′He

f 20
�

c2

f 20
. (2.5)

13



14 Chapter 2. The two-layer shallow-water model

The dispersion relation (1.10) is still valid for baroclinic Poincaré waves, with He and g′

instead of H and g.

ω2
� f 2 + c2κ2 � f 2 + g′Heκ

2
� f 2(1 + L2

dκ
2). (2.6)

For NIWs, frequency ω is close to f . This means that NIWs are associated with large-scale
motion compared to the deformation radius (κ−2 � L2

d).

2.2 Governing equations

As a framework, we will use the two-layer shallow-water equations, with a rigid lid on the top
layer:

u1t � − f ẑ × u1 − [u1 · ∇]u1 −
1
ρ∇psfc , (2.7)

u2t � − f ẑ × u2 − [u2 · ∇]u2 −
1
ρ∇psfc − g′∇η, (2.8)

ηt � −u2 · ∇η − h2∇ · u2 , (2.9)

where ui is the velocity in the ith layer, f is the Coriolis frequency, psfc is the pressure at the
surface, η is the interface deformation and hi is the ith layer thickness. Subscripts t, x and y
designate partial derivatives throughout the thesis. Also, ∇ is the two-dimensional gradient
operator and ∇· is the two-dimensional divergence operator.

We define our baroclinic and barotropic velocities as follows:

u ≡ 1
2 (u2 − u1), (2.10)

U ≡ 1
2 (u2 + u1). (2.11)

We can rewrite the equation system (2.7-2.9) with variables u and U .

ut � − f ẑ × u − [U · ∇]u − [u · ∇]U − g′

2 ∇η, (2.12)

Ut � − f ẑ ×U − [U · ∇]U − [u · ∇]u − 1
ρ∇psfc −

g′

2 ∇η, (2.13)

ηt � −
(

H
2 + η

)
∇ · (u + U ) − (u + U ) · ∇η. (2.14)

The shallow-water system can also be expressed in a Bernoulli-vorticity form, reading

u1t � −( f + ζ1)ẑ × u1 − ∇B1 −
1
ρ∇psfc , (2.15)

u2t � −( f + ζ2)ẑ × u2 − ∇B2 −
1
ρ∇psfc − g′∇η, (2.16)

where Bi �
1
2 (u2

i + v2
i ). We can also combine these equations and find the governing equations

for u and U .

ut � −( f + ζ)ẑ × u − ζbc ẑ ×U − 1
2∇

(
2u ·U + g′η

)
, (2.17)

Ut � −( f + ζ)ẑ ×U − ζbc ẑ × u − 1
2∇

(
|u |2 + |U |2 + 1

ρ psfc + g′η
)
, (2.18)

where ζ ≡ 1
2 (ζ1 + ζ2) and ζbc ≡ 1

2 (ζ2 − ζ1). The equation for η is, as before, (2.14).
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2.3 Sets of variables

Different sets of variables can be chosen to describe the flow evolution. In the previous section,
we have written the governing equation as functions of the barotropic (U,V) and baroclinic
(u , v) velocities. This leads to the basis

u , v , η,U,V. (2.19)

The two-layer shallow-water model, with this choice of variables, features an important differ-
ence compared to the QG framework, where the barotropic velocities are divergenceless. Here,
U and V have a small divergent component, resulting from the deformation of the interface.
To see why, one can look at the vertically-averaged velocity, that goes like

U ≡ 1
H

∑
i

hi ui , (2.20)

�

(
1
2 − η̃

)
u1 +

(
1
2 + η̃

)
u2 , (2.21)

� U + 2η̃u , (2.22)

where η̃ � η/H. By definition, ∇ · U is zero. No mass can enter nor leave a location in the
domain because the top and bottom boundaries are rigid. One can then conclude that

∇ ·U � ∇ · (−2η̃u) (2.23)

i.e. the divergence of U is not zero in general.
For algorithmic reasons, we will use U in the numerical solver of our model. For analysis

purposes, we will use U because it relates more easily with Gill (1982) vertical modes decom-
position and with a QG description of the flow. We know that U has a non-zero divergence,
but we also know it is small as long as η � H, according to (2.23). We will describe the
divergenceless part of the flow with the streamfunction ψ and the irrotational part with the
potential φ.

U � −ψy + φx (2.24)

V � +ψx + φy (2.25)

We also want to write down our baroclinic variables in another basis. We will make use of
themodes obtainedwith thewave- and geostrophic-mode decomposition performed in section
2.4. u, v and η can be written as two wave modes W+ and W− and a baroclinic geostrophic
mode labeled G. These three modes form a complete basis for the baroclinic flow. We are left
with the variables we will work with:

W,G, ψ, φ, (2.26)

where the two wave modes were combined together. Take note that ψ and φ are dependent on
W and G because equation (2.22) can be rearranged as

U − 2(η̃GuG + η̃GuW + η̃W uG + η̃W uW ) � ∇⊥ψ + ∇φ (2.27)

where ∇⊥ � −∂y x̂ + ∂x ŷ.



16 Chapter 2. The two-layer shallow-water model

2.4 Decomposition into geostrophic and wave modes

In Fourier space, the baroclinic flow can be described by a set of two inertia-gravity waves
and a geostrophic mode at each wavenumber k � (k , l). This linear decomposition is useful
when trying to isolate NIWs from the rest of the flow. Recall that we already briefly described
this decomposition in section 1.1. We will now follow the method of Salmon (1998) in order
to actually perform the change of basis. Salmon (1998) developed his decomposition using a
single-layer linearized shallow-water model like (1.1-1.2). Even if the waves we study evolve
as a baroclinic mode within a two-layer model, the algebra stays the same.

Before switching to Fourier space, we will combine all baroclinic variables in a single
convenient complex variable Θ

Θ(x , t) �



√
Hu(x , t)
√

Hv(x , t)
√

g′η(x , t)



. (2.28)

In Fourier space, (1.1-1.2) imply

i
dΘ(k)
dt

�



0 i f0 kc
−i f0 0 lc
kc lc 0



Θ(k). (2.29)

Notice the striking similarity with Schrödinger’s equation. Now, like any quantum physicist
would do, we will compute the eigenvectors and eigenvalues of the above equation. We get

Θ1(k) ∼



−ilc
+ikc

f0



Geostrophic balance (2.30)

Θ2,3(k) ∼



±ωk + i f0l
±ωl − i f0k
c(k2 + l2)



Inertia-gravity waves (when κ2 , 0) (2.31)

Θ2,3(k) ∼



1
∓i
0



Inertia-gravity waves (when κ2 � 0) (2.32)

where ω is the positive root of ( f 20 + c2κ2)1/2. These eigenfunctions are normalized such that∑
i |Θi |

2 � 1 for all k. When we project the eigenvectors on the actual flow at time t0, we end
up with coefficients Ci (k , t0). With these coefficients, it is easy to reconstruct the flow,

Θ(x , t) � ΣiCi (k , t0)Θi (k)e−iΩi (t−t0) , (2.33)

where Ω1=0 and Ω2,3 � ±ω.
For our purposes, this decomposition will be useful to separate wave and geostrophic

modes of the baroclinic flow outputted by our two-layer nonlinear shallow-water system. We
will therefore perform the decomposition at each time t and onlymake use of the instantaneous
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result. We will use c2 � g′He . We will be able to find the energy energy associated with each
mode:

Ei (t) �
1

2Hnx ny

"
C∗i (k , t)Ci (k , t) dk. (2.34)

If we want, for example, to consider only the potential energy, represented by the third element
in the made-up vector Θi � [αi ; βi ; γi], we should weight our sum by the squared norm of γ

Epot
i (t) �

1
2Hnx ny

"
C∗i (k , t)Ci (k , t)γ∗i (k)γi (k) dk. (2.35)

2.5 Energy components

We are interested in the energy budget within the basis U,V, u , v , η. Notice that because of
the interface deformation field, a cross-term exists between the barotropic (bt) and baroclinic
(bc) modes in the energy budget. We call it the "cubic" term, EC. All of the energy budget
components are written down below.

total ET
�
1
2

" [(1
2
−
η

H

)
|u1 |

2 +
(1
2
+
η

H

)
|u2 |

2 +
g′

H
η2
]
dx (2.36)

barotropic EB
�
1
2

"
|U |2 dx (2.37)

bc kinetic EK
�
1
2

"
|u |2 dx (2.38)

bc potential EP
�
1
2

"
g′

H
η2 dx (2.39)

cubic EC
� 2
"

η

H
U · u dx (2.40)

We can also separate the barotropic energy into its divergenceless and irrotational parts. Once
again, this separation is not orthogonal and yields some "barotropic cross-terms", EX .

bt divergenceless Eψ � −
1
2

"
ψ∇2ψ dx (2.41)

bt irrotational Eφ � −
1
2

"
φ∇2φ dx (2.42)

bt cross-terms EX
� +1

2

"
(2φyψx − 2φxψy) dx (2.43)

Finally, the baroclinic energy can be divided between W and G.

bc waves EW
�
1
2

" (
|uW |

2 +
g′

H
η2W

)
dx (2.44)

bc geostrophic EG
�
1
2

" (
|uG |

2 +
g′

H
η2G

)
dx (2.45)

Note that we could also use (2.34) for EW and EG, and it would give the same results.
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2.6 Energy equations for the balanced flow

It is of great interest to understand how each term in the energy budget evolves. The balanced
modes, i.e. ψ and G, are especially important. Those components of the energy budget are
thought to evolve slowly in time. Using the governing equations, we candetail how thedifferent
modes are forcing on Eψ and EG. A transfer between waves and the balanced flow should be
visible amongst the terms of the energy equation. This could give us intuition on the physical
mechanism behind the energy transfer.

Equation for Eψt

Wewill begin with the time-evolution of the barotropic divergenceless energy, Eψ. From (2.41),
we can write Eψt like

Eψt � −

"
ζtψ dx. (2.46)

ζt is specified by the governing equations of our system and is made up of different parts. Bear
inmind that the barotropic vorticity ζ is always equal to∇2ψ, because the curl of Uφ is zero. We
will label each of the forcing term with superscripts on the left-hand side of Et . For example,
WW Eψt would represent the impact of quadratic wave terms on the barotropic divergenceless
energy.

Before splitting Eψt into various components, we have to recall the governing equation for
U in Bernoulli-vorticity form:

Ut � −( f + ζ)ẑ ×U − ζbc ẑ × u − 1
2∇

(
|u |2 + |U |2 + 1

ρ psfc + g′η
)
. (2.47)

We will take the curl of this momentum equation and insert it in (2.46).

ζt � ẑ ·
(
∇ ×

[
−( f + ζ)ẑ ×U − ζbc ẑ × u − ∇ (...)

] )
(2.48)

The divergence in Ut vanishes when we take the curl. With the use of a vectorial identity, we
rewrite ζt as

ζt � ∇ ·
[
−( f + ζ)U − ζbcu

]
. (2.49)

We will separate U into its divergenceless and irrotational parts: U � ∇⊥ψ + ∇φ � Uψ + Uφ.
We then find

ζt � ∇ ·
[
−( f + ζ)Uψ − ( f + ζ)Uφ − ζbcu

]
(2.50)

� −( f + ζ)∇ ·Uψ −Uψ · ∇( f + ζ) + ∇ ·
[
−( f + ζ)Uφ − ζbcu

]
(2.51)

� −Uψ · ∇ζ + ∇ ·
[
−( f + ζ)Uφ − ζbcu

]
, (2.52)

where we made use of the fact that ∇ · Uψ � 0. The first term on the right-hand side of (2.52)
is the self-advection of the divergenceless barotropic flow. This term should not impact the
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energy budget. Actually, a simple integration by part on the whole domain proves it is zero:"
(Uψ · ∇ζ)ψ dx �

"
(∇⊥ψ · ∇ζ)ψ dx (2.53)

�

"
∇ · (ζ∇⊥ψ)ψ dx (2.54)

�

" [
∇ · (ψζ∇⊥ψ) − ζ∇ψ · ∇⊥ψ

]
dx (2.55)

� 0, (2.56)

because ∇ψ · ∇⊥ψ � 0. We work on a doubly periodic domain, so the integral of a divergence
on the whole domain is zero. We are now left with a quite compact expression for Eψt :

Eψt � −

"
∇ ·

[
−( f + ζ)Uφ − ζbcu

]
ψ dx. (2.57)

We can break it up to show explicitly which modes contribute to Eψt . We will separate the
baroclinic variables into u � uW + uG, η � ηW + ηG and ζbc � ζW + ζG. All of the non-zero terms
of the energy equation for Eψ are listed below.

All non-zero contributions to Eψt

WW Eψt �

"
∇ · (ζW uW )ψ dx (2.58)

GGEψt �

"
∇ · (ζGuG)ψ dx (2.59)

WGEψt �

"
∇ · (ζGuW + ζW uG)ψ dx (2.60)

φEψt �

"
∇ · ( f Uφ)ψ dx (2.61)

φψEψt �

"
∇ · (ζUφ)ψ dx (2.62)

Equation for EG
t

Next, we consider the different energy contributions to the baroclinic geostrophic energy. From
(2.45), we know that

EG
t �

" (
uG · ut +

g′

H ηGηt
)
dx (2.63)

Recall the governing equation (2.12) for u in the regular form, as well as governing equation
(2.14) for η:

ut � − f ẑ × u − [U · ∇]u − [u · ∇]U − g′

2 ∇η, (2.64)

ηt � −∇ ·
[(

H
2 + η

)
(u + U )

]
. (2.65)
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There are very few simplifications that can be done in EG
t , apart from making use of ∇ · uG � 0

and uG · ∇ηG � 0 (the baroclinic geostrophic flow is divergenceless and along the interface
deformation field gradient). We then deduce that

GGEG
t � −

" (
uG ·

(
f ẑ × uG + g′

2 ∇ηG
)
+ g′

H ηG∇ ·
[
uG

(
H
2 + ηG

)] )
dx (2.66)

� 0. (2.67)

This last results holds only for our set-up where the two layers are of equal thicknesses. The
other contributions to EG

t are obtained in a straightforward way by inserting (2.64) and (2.65)
in (2.63). They are listed below.

All non-zero contributions to EG
t

WW EG
t � −

" (
uG ·

(
f ẑ × uW + g′

2 ∇ηW
)
+ g′

H ηG∇ ·
[
uW

(
H
2 + ηW

)] )
dx (2.68)

WGEG
t � −

"
g′

H ηG∇ ·
[
uGηW + uWηG

]
dx (2.69)

φEG
t � −

"
g′

2 ηG∇ ·Uφ dx (2.70)

ψGEG
t � −

"
uG ·

(
[Uψ · ∇]uG + [uG · ∇]Uψ

)
dx (2.71)

φGEG
t � −

" (
uG ·

(
[Uφ · ∇]uG + [uG · ∇]Uφ

)
+ g′

H η
2
G∇ ·Uφ

)
dx (2.72)

ψW EG
t � −

" (
uG ·

(
[Uψ · ∇]uW + [uW · ∇]Uψ

)
+ g′

H ηGUψ · ∇ηW
)
dx (2.73)

φW EG
t � −

" (
uG ·

(
[Uφ · ∇]uW + [uW · ∇]Uφ

)
+ g′

H ηG∇ ·
(
ηW Uφ

))
dx (2.74)
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Numerical results

3.1 Barotropic dipole

Initial fields

XV performed a numerical experiment highlighting their "stimulated wave generation" mech-
anism. They use a northward-propagating dipole as a balanced flow. It consists of two
side-by-side vortices turning in opposite directions and translating in a straight line at constant
speed. Wewill conduct simulationswith the same geometrical set-up as theirs, shown in figure
3, and we will vary a few parameters (dipole size, dipole velocity, Ld , etc). Initial conditions for
the dipole fit the following vorticity, in polar coordinates:

ζ(r, θ) �



2κ0U0
J0(κ0rdip) J1(κ0r) sin θ if r < rdip ,

0 otherwise.
(3.1)

Here, U0 is the speed of the dipole, rdip is its spatial scale, Jn are the Bessel function of the first
kind of order n, and κ0 satisfies J1(κ0rdip) � 0. We also choose the coordinate system to be
initially centered on (x , y) � (0, ydip). Notice that the initial barotropic flow is divergenceless.

Along its way, the dipole encounters a NIW jet. This jet is characterized by a Gaussian
function. η is chosen to satisfy ζ � 2 f η̃, i.e. NIWs have no linear potential vorticity. The fields
describing the jet only depend on y. They are written down below:

u(y) � u0e−y2/σ2y , (3.2)

v(y) � 0, (3.3)

η(y) � −
H y

f0σ2y
u(y). (3.4)

Reference simulation: no background flow

The first run is a reference simulation where NIWs evolve on their own, without any barotropic
dipole. We use our two-layer shallow-water model. Figure 4a plots the time evolution of the
wave velocity, u, and of the interface height field, η. Figure 4b shows the energy time series for

21
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Figure 3: Initial fields of experiment D1. x- and y-axes correspond to the zonal andmeridional
directions, spanning 500 km × 500 km.

this reference simulation. EW
kin has a large amplitude (nearly 100% of total energy), and so do

EW and Etotal because they include EW
kin. The three barotropic energy terms (Eψ, Eφ and EX), as

well as EG, are zero and stay zero. The right panel shows the same curves, but offset by their
initial values, making small variations visible. The initial value considered is averaged over
the first inertial period. High-frequency exchanges between kinetic and potential share a small
part of the energy, about 0.8% of total energy. The wave typical wavenumber slightly increases
with time, as shown in figure 4c. We used the baroclinic kinetic energy-weighted wavenumber,
defined as

ks �

∫
κ |u(κ) |2 dκ∫
|u(κ) |2 dκ

. (3.5)

A quick look back at the linearized one-layer shallow-water system (1.1-1.2) can enlighten
us on the high-frequency exchanges between EW

pot and EW
kin. The kinetic energy evolution of the

one-layer model goes like

KEt �

∫
u · ut ds (3.6)

�

∫
u · (− f ẑ × u − g∇η) ds (3.7)

� −g
∫

u · ∇η ds (3.8)

� g
∫

η ∇ · u ds (3.9)

where, on the last line, an integration by parts was performed. Because total energy is con-
served, this variation in the kinetic energy is balanced by the potential energy. We will now
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(a) Time evolution of u and η.
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(b) Energy time series.
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Figure 4: Reference experiment with NIWs only. Ld � 5 km and u0 � 0.15 m/s. In (a), x- and
y-axes correspond to the zonal and meridional directions, spanning 500 km × 500 km.

make use of (1.7) and (1.8) in order to get rid of η and ∇ · u in our last expression. We then get

KEt � g
∫ (

H
f
ζ

) (
−
1
f
ζt

)
ds (3.10)

� −
gH
f 2

∫
ζζt ds (3.11)

� −L2
d

∫
ζζt ds (3.12)

If we assume that ζ oscillates at a frequency f , we find that KEt is

KEt � −L2
d

∫
ζ20(x) sin( f t) cos( f t) ds (3.13)

� −
L2

d

2

∫
ζ20(x) sin(2 f t) ds (3.14)

Considering a ballpark estimate for KE to be L2
W

∫
ζ20(x) ds, we find that

KEt

KE
∼

L2
d

L2
W

sin(2 f t) ∼ 0.003 sin(2 f t) (3.15)

where we have taken the wave scale LW to be 100 km. Therefore, our quick estimate produces
an energy exchange between EW

pot and EW
kin very similar in frequency and in amplitude to figure

4.
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Table 1: Parameters for the dipole experiments. L0 is defined as 1/ks , where ks is the barotropic
kinetic energy weighted wavenumber. For all experiments, f0 � 10−4 s−1.

Experiment: D1 D2 D3

nx × ny 2562 2562 5122 grid size
Lx × Ly (500 km)2 (500 km)2 (1500 km)2 domain size
Ht 160 m 160 m 1000 m domain thickness
ν (10−6) 1.5 m4/s 1.5 m4/s 7.5 m4/s biharmonic viscosity
Ld 5 km 5 km 30 km deformation radius
U0 0.05 m/s 0.1 m/s 1 m/s dipole velocity
rdip 40 km 40 km 120 km dipole radius
ydip -0.2 Ly -0.2 Ly -0.2 Ly dipole position
u0 0.15 m/s 0.15 m/s 0.25 m/s NIWs velocity
σy 50 km 50 km 250 km NIWs width
Romax 0.14 0.28 0.92 Rossby number
L0 15 km 15 km 45 km typical length scale

First dipole experiment (D1): XV-like

For the first run (D1), we picked the exact same parameters used by XV. This corresponds to
a weak dipole, weak stratification, and strong waves. All parameters are specified in table 1.
Results for this set-up are shown in figure 5, using both our two-layer shallowwater model and
XV generalized-Lagrangian-mean model (glm). Recall that governing equations for the glm
model are (1.11) and (1.18).

During the simulation, the dipole crosses the domain once (figure 5a). It almost goes
along an straight line, slightly turning west along its way. The dipole streamfunction stays
stable and does not break apart. The baroclinic velocity u is basically just the wave velocity
– baroclinic geostrophic currents are negligible. The wave field is strongly perturbed by the
dipole, although its final characteristic length scale is comparable to its initial value (figure 5c,
bottom panels). The energy redistributes itself in Fourier space, but does not move much to
higher wavenumbers. Rather, the energy wave vector orientation is changed and the spatial
distribution of NIWs becomes isotropic.

The velocities resulting from our two-layer model are virtually identical to those produced
by the glm model, both with our implementation (figure 5c) of their equations or with figure 4
of XV. But even if the eye could not distinguish any difference in the velocity fields, the energy
time series are still very different.

Figures 5b shows the energy time series for the two-layer model. Notice that any change to
an energy term is small, under 0.5% of total energy. At first, the potential energy goes down as
the waves disperse, just like in the reference run. Afterwards, when the dipole hits the waves,
the potential energy goes up, mainly at the expense of the wave kinetic energy. One can also
notice a small dip in EC around t � 15 inertial periods, a feature that will be also present in the
latter experiments D2 and D3. A little later in time, when the wave scale reaches a maximum
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(b) Energy time series. Thick lines are values av-
eraged every inertial period.
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Figure 5: Experiment D1. Ld � 5 km, U0 � 0.05 m/s and u0 � 0.15 m/s. In (a) and (c), x- and
y-axes correspond to the zonal and meridional directions, spanning 500 km × 500 km.

(c.f. figure 6) and the wave potential energy stops growing, the "cubic" energy term increases,
and the wave kinetic energy goes down a little. Also, Eψ begins to decrease at that time, a
reduction that will continue to get larger until 100 inertial periods into the simulation. Notice
that the wave action, proportional to EW

kin, is not conserved in the two-layer model. Eφ and EX

are extremely small, and were not plotted. In fact, those two components of the energy budget
will be very small for every experiment conducted in this thesis, so we will not show their time
series from now on.

The glm model gives a very different portrait (figure 5d). The balanced energy goes down
very cleanly, at the expense of the wave potential energy. Most of the transfer takes place
between t � 5 and 25 inertial periods. The wave kinetic energy is conserved, as is the total
energy. The transfer amplitudes are of the sameorder in bothmodels. Figure 5d is a perfect copy
of the results reported in XV, giving us confidence in our implementation of their equations.

This first look at these results leads us to observe that: i) both models produce virtually
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Figure 6: Comparison of the baroclinic kinetic energy-weighted wavenumbers for experiments
D1 (U0=0.05 m/s) and D2 (U0=0.1 m/s).

the same flow, ii) both models show Eψ going down, iii) both models show EW
pot going up, and

iv) the two-layer model sees the wave action conservation broken. We also take notice that
the NIW length scale does not reduce much during the integration. Recall that a reduction in
scale of the NIWs and a concomitant increase in the wave potential energy is at the core of the
"stimulated generation" mechanism described by XV.

Second dipole experiment (D2): stronger dipole

We doubled the dipole velocity, up to U0 � 0.1 m/s. According to theory, the NIW scale should
decrease more, as waves are distorted by a stronger background flow. The NIW scale is indeed
reduced to a smaller value, confirmed a posteriori by figure 6. Also, a factor-2 change in a
parameter does not put us off the parameter space where XV’s model is valid. Figure 7 shows
the results for experiment D2. The simulation duration is 80 inertial periods, enough time for
the dipole to cross the domain once.

Figures 7a and 7c are broadly similar to figures 5a and 5c. A noteworthy difference is that
the NIW length scale now goes to higher wavenumbers, and it reaches small scales quicker
(also c.f. figure 6). The smaller features are in the vicinity of the dipole.

The big difference with D1 lies in the energy times series. At about 10 inertial periods into
the simulations, the dipole hits the NIW jet. In the two-layer model, EW

pot quickly undergoes a
threefold increase, at the expense of EC. Meanwhile, EW

kin is approximately conserved. Once
the NIW scale has reached its maximum value, EW

pot stabilizes and even goes down a little, as
does the NIW scale (see figure 6). Also, during the same time period (between t � 15 and 30
inertial periods), EC goes back up to reach its initial value and Eψ decreases. In the second half
of the integration, it becomes clear that the net transfer of energy has been from Eψ to EW

pot.
The glm model exhibits very similar energy time series compared to the previous weak-

dipole experiment D1. The exchange amplitude is now a bit bigger, up to a maximal value of
0.6%. But now, most importantly, bothmodels show energy time series (figures 7b and 7d) with
striking resemblances. The two-layer model time series for EC and Eψ (blue and gray curves
on figure 7) add up to an amount very similar to the glm model time series for Eψ. Recall that
in the two-layer framework, EC is the kinetic energy associated with the interface deformation.
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(b) Energy time series. Thick lines are values av-
eraged every inertial period.
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Figure 7: Experiment D2. Ld � 5 km, U0 � 0.1 m/s and u0 � 0.15 m/s. In (a) and (c), x- and
y-axes correspond to the zonal and meridional directions, spanning 500 km × 500 km.

EC should not be associated with baroclinic or barotropic energy – it is more like the correction
between these two modes. In experiment D2, energy would go from EC to EW

kin at first, before
moving from Eψ to EC later. Notice that EC has no equivalent in the glm model. Therefore,
even if the final energy transfer is similar with both models, it seems like the mechanism is not
the same. We nonetheless acknowledge that our model reproduces the results from the glm
model, aside from the difference in EC. A more detailed comparison, and ideas to explain why
the concordance between models is not as good in D1, is offered in the discussion section.

Third dipole experiment (D3): "realistic" parameters

The parameters chosen by XV had to correspond to small Ro and Bu numbers in order to
satisfy to the approximations behind the glm model. Since our two-layer model does not
have these limitations, we can study the transfers between NIWs and the balanced flow with
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a stronger flow and stronger stratification. We selected the new parameters with the intention
of representing reality more accurately. We used synoptic-scale NIWs with a size of many
hundreds of kilometers. Initial conditions for waves are still in the shape of a jet. They
instantaneously appear at time t � 0, as before. This choice is not so unrealistic: when storms
blow wind and put the upper layer of the ocean in movement, it acts on a very short time
scale, i.e. a few hours (Alford et al., 2016). Although working on a now bigger domain (1500
km × 1500 km), we remain on a f -plane. Thinking of the Gulf Stream as of our reference
background flow, we choose a maximal velocity of O(1 m/s) and a maximal vorticity of about
O( f0). Stratification is more representative of the reality when Ld � 30 km is used. Detailed
parameters for experiment D3 are in table 1.

This experiment is outside of the parameter space formally assumed for the glmmodel. We
nonetheless tried to run a simulation of experiment D3 with XV’s model, expecting that the
results would not be reliable.

As with experiments D1 and D2, the dipole again goes north, here with a negligible de-
flection caused by waves (figure 8a). Some baroclinic geostrophic currents are also excited,
especially at about 5 inertial periods into the simulation (middle panels of 8). These baroclinic
geostrophic currents follow the dipole as it moves. Their length scale is very small. Like in
the previous experiments D1 and D2, the NIWs jet is broken and waves cover all the domain
isotropically. NIWs see a reduction in their length scale, down to some very small features
in the vicinity of the dipole. Take note that the scale to which NIWs go down is limited by
the deformation radius. Waves retain their near-inertial character, and therefore their scale is
obeying to the dispersion relation (1.10).

The wave velocity field obtained with the glmmodel (8c) is qualitatively similar to the field
produced by the two-layer model, but differences are now obvious. Differences are especially
important in the vicinity of the dipole, as the glmmodel does not enables baroclinic geostrophic
currents.

The energy time series (figure 8b) shows a significant increase in the wave potential energy
as the dipole impinges on the waves. This increase goes along with a decrease in EC, EW

kin and
Eψ during the first ten inertial periods. Later on, EC and EW

kin go back up, but Eψ remains
below its initial value. As before, we see a net transfer from Eψ → EW

pot, with EC serving as
an intermediate reservoir. However, in D3, this mechanism is not working alone. Indeed, the
final value of Eψ is well under the lowest energy level reached by EC. There thus must be a
mechanism that transfers energy directly from Eψ to EW

pot.

The energy time series for the glmmodel (figure 8d) are reminiscent of previous experiments
D1 and D2. They differ from the results of the two-layer model by their absence of baroclinic
geostrophic energy and their conservation of the wave action.

This last experimentmost importantly teaches us that the energy transfer from the balanced
flow to the waves takes place even with more realistic parameters, i.e. at higher Ro and with
stronger stratification. It is very interesting that the energy transfer is robust to a variety of
parameters, with the only condition of a decrease in the NIW length scale.
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(b) Energy time series. Thick lines are values av-
eraged every inertial period.
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(d) Energy time series.

Figure 8: Experiment D3. Ld � 30 km, U0 � 1 m/s and u0 � 0.25 m/s. In (a) and (c), x- and
y-axes correspond to the zonal and meridional directions, spanning 1500 km × 1500 km.
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Time evolution of the balanced flow

Previous sections exposed the energy time series for experiments D1, D2 and D3. Although
this gave us an intuition on how the energy changes reservoir, it did not tell us with certainty
how the energy transfers work. With the use of the energy evolution equation, we can pin
down the origin of energy transfers. That is what we will do in this section.

Figure 9 shows how the different forcing terms impact the energy equations of the balanced
flow. In the dipole experiments, EG is very small and will not be considered. Eψ is influenced
by W,G, φ and ψ according to equations (2.58) through (2.62). The forcing terms are integrated
in time and shown as energy time series. Each integrated forcing term corresponds to the
change in Eψ if no other forcing were considered. The sum of all non-zero contributions to a
balanced mode make up the energy time series as calculated with the energy budget equation.

In experiment D1, the evolution of Eψ is subject to the strong forcing of φEψ and WW Eψ

(figure 9a). These two terms are broadly of equal amplitude and of opposite sign, therefore
approximately canceling. The bottom panel of figure 9a shows the sum φEψ + WW Eψ (light
blue curve). φψEψ (pink) is the most significant contribution to the change in Eψ. We will
later argue that φψEψ is a transfer term that carries energy between Eψ and EC. We finally take
notice that the sum of the five contributions to Eψ does not match perfectly with the time series
for Eψ. This discrepancy might be caused by the time stepping scheme which is not the same
for the model and for computing the energy evolution contribution. For the model, we use a
"leap-frog" time stepping scheme, which is more accurate, while Eψt is computed with a simple
Euler scheme.

In experiment D2 (figure 9b), there is once again a clear forcing competition between φEψ

and WW Eψ, each one pushing with a strength that would change the energy by an amount
of 10% if it were not balanced. On the bottom panel, one sees that, as before, φψEψ is very
important to explain the decrease in Eψ. φψEψ first increases while the dipole enters in contact
with the NIWs. It afterwards goes down, when the dipole moves away.

Figure 9c is the reconstructed energy time series for experiment D3, the run with "realistic"
settings. We see the same kind of pattern, inwhich φEψ and WW Eψ are similar in amplitude and
opposite in sign. However, it is now the sum of φEψ and WW Eψ that fits with good agreement
to the decrease in Eψ. The experiment D3 also features a change in the other balanced energy
term, EG. It is mostly ψW EG that produces the transfer from Eψ to EG (not shown).

In the discussion section, we will try to shed light on the issues raised by the inspection of
the balanced flow time evolution. We will see that φψEψ has a complement (labeled (φψψ)EC)
such that

φψEψt + (φψψ)EC
t ' 0. (3.16)

We will see that this complement is indeed transferring energy between Eψ and EC. The
energy transfer between the NIWs and the balanced flow is therefore indirect and goes through
EC. Very interestingly, we will see in the next section that EC is not as important when the
background flow is turbulent.
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(c) Experiment D3.

Figure 9: Balanced energy time series, reconstructed with the energy-evolution equations for
each mode.

3.2 Turbulent flows

Wewill next use turbulence instead of a dipole as initial conditions for the barotropic flow. This
background flow choice is closer to reality. Also, no specific "event", like the encounter between
the dipole and waves, will happen with an isotropic and uniform turbulent field. This will
help us draw conclusions not specific to a particular geometrical set-up. The mature turbulent
flow is obtained after the spin-up of a two-dimensional flow with random initial phases and
small wavelengths. The mature flow exhibits turbulent features with a scale of 41 km. The
domain has a size of 1500 km × 1500 km, and is still doubly periodic. Over the background
flow, we initially superimpose NIWs with a Gaussian profile along the meridional direction.
All parameters for T1, and for the other turbulent experiments, are detailed in table 2.
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Table 2: Parameters for the turbulent experiments. L0 is defined as 1/ks , where ks is the
barotropic kinetic energy weighted wavenumber. For all experiments, f0 � 10−4 s−1.

Experiment: T1 T2 T3

nx × ny 5122 5122 5122 grid size
Lx × Ly (1500 km)2 (1500 km)2 (1500 km)2 domain size
Ht 1000 m 1000 m 1000 m domain thickness
ν (10−6) 7.5 m4/s 7.5 m4/s 7.5 m4/s biharmonic viscosity
Ld 15 km 30 km 50 km deformation radius
U0 1 m/s 1 m/s 1 m/s turbulence velocity
u0 0.25 m/s 0.25 m/s 0.25 m/s NIWs velocity
σy 250 km 250 km 250 km NIWs width
Romax 0.52 0.52 0.52 Rossby number
L0 41 km 41 km 41 km typical length scale

First turbulent experiment (T1): weak stratification

Experiment T1 aims to highlight the energy transfer caused by a scale reduction in NIWs, a
phenomenon that was first pointed out by XV and that we reproduced in the previous results.
To do so, we chose a small deformation radius (15 km) compared with the typical scale of
the barotropic flow (41 km). Figure 10a shows zonal velocity fields. U evolves like a normal
2d turbulent flow and its typical length scale enlarges with time. uG is excited at very small
scales andwith negligible amplitude (not shown). Waves, initially in a Gaussian shape, quickly
become isotropic and reach very small scales. This very significant scale reduction is the reason
for an increase in EW

pot larger than what we saw in experiments D1, D2 and D3.
In figure 10b, energy time series are plotted. The wave potential energy increases with

time to reach more than 2% of total energy after 100 inertial periods. Keeping in mind that
the wave kinetic energy constitutes just 8% of total energy, this represents a 25% increase in
the wave energy. The wave kinetic energy remains approximatively constant. The barotropic
divergenceless energy decreases, as does EC. Both time series decreasemonotonically andwith
a broadly constant slope.

It is now very clear that energy coming from the balanced flow increases the wave potential
energy, although it is unclear whether EC plays an intermediary role in the transfer. The
conservation of wave action in Experiment T1 is remarkable. After a small dip in the first 10
inertial periods, EW

kin (proportional to the wave action) is increasing with a very gentle slope.
Variations in EW

kin are much smaller than those in EW
pot or Eψ.

Second turbulent experiment (T2): medium stratification

In this next experiment, stratification is increased to a value characteristic of the mid-latitude
ocean jets (Ld � 30 km). This is still smaller than the typical background flow scale (41 km).
A stronger stratification should stop the NIW cascade before it reaches scales as small as in
T1, as indicated by dispersion relation (2.6). We expect this would reduce the energy transfer
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(b) Energy time series. Thick lines are values av-
eraged every inertial period.

Figure 10: Experiment T1. Ld � 15 km, U0 � 1 m/s and u0 � 0.25 m/s. In (a), x- and y-axes
correspond to the zonal and meridional directions, spanning 1500 km × 1500 km.

from the balanced flow to NIWs. We will also find that a new energy transfer happens in this
simulation.

Figure 11a shows that U is behaving like before, and its length scale grows with time. But
here, baroclinic geostrophic currents are not negligible any more (middle panel of 11a). They
develop at small length scales. On the other hand, waves exist predominantly at large scale.
The length scale cascade stopped early, as anticipated.

Figure 11b shows energy time series for experiment T2. There is still a small increase
in the wave energy, carried by the potential energy. The baroclinic geostrophic energy is also
building up, a feature that we did not observe before. Eψ is going down, feeding both baroclinic
geostrophic currents and waves. The wave action, equal to EW

kin/ f0, oscillates in time with a
small amplitude. As stratification is increased, it more strongly perturbs the NIW phase and
breaks the conditions for the conservation of wave action.

Third turbulent experiment (T3): strong stratification

We will now use a stronger stratification, that is a larger deformation radius. Ld � 50 km is
now larger than the scale of the barotropic flow L0 � 41 km. This will highlight the transfer
mechanism taking energy from the barotropic mode to feed EG.

Figure 12a shows the different velocity fields of the experiment. In the top panel, U
undergoes the usual inverse-cascade, without visible perturbation by the wave field. The
middle panel is the baroclinic geostrophic velocity, which is of significant amplitude. It grows
from zero, and acquires a turbulent shape, with a small length scale. Finally, the bottom panel
is the wave velocity. It keeps a large characteristic length scale (compare with 7a).

Figure 12b presents the energy time series of experiment T3. While variations in the wave
potential and kinetic energies are just like in experiment T2, EG increases. Both the potential
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(b) Energy time series. Thick lines are values av-
eraged every inertial period.

Figure 11: Experiment T2. Ld � 30 km, U0 � 1 m/s and u0 � 0.25 m/s. In (a), x- and y-axes
correspond to the zonal and meridional directions, spanning 1500 km × 1500 km.
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(b) Energy time series. Thick lines are values av-
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Figure 12: Experiment T3. Ld � 50 km, U0 � 1 m/s and u0 � 0.25 m/s. In (a), x- and y-axes
correspond to the zonal and meridional directions, spanning 1500 km × 1500 km.
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and kinetic parts of EG are becoming more significant, at the expense of Eψ.
Recall that the turbulent cascade is also at play in the vertical direction and not only in the

horizontal plane. There is normally a "barotropisation" of the flowwhere the baroclinic modes
give up energy to the barotropic flow (see the Kolmogorov theory in Vallis (2006)).

One could think the increase in EG is remarkable because it opposes to the expected inverse-
cascade towards larger vertical wavenumbers. However, a simple argument can explain the
"baroclinisation" of the flow: because the baroclinic geostrophic mode is initially zero, it has
no choice but to grow. As long as there is some energy transfer terms mixing the baroclinic
geostrophic currents and ψ, namely GGEψ, the baroclinic geostrophic energy will not stay zero.
Small amplitude energy exchanges between waves and baroclinic geostrophic currents are able
to trigger an amplification of the baroclinic geostrophic currents supplied in energy by Eψ.
Although this phenomenon is interesting, it is not directly relevant to our study of transfers
from the balanced flow to NIWs, and will not be considered further.

Time evolution of the balanced flow

We now turn our attention to the time evolution of the balanced modes ψ and G. Figure 13
breaks down the energy evolution equation for the balanced modes in experiments T1, T2 and
T3. This should help us to better understand energy transfers between the fast modes and the
balanced modes.

Experiment T1 exhibits a strong forcing competition between φEψ and WW Eψ (figure 13a).
We saw the same thing for the other dipole experiments. When φEψ and WW Eψ are added up
(bottom panel) they are the main contribution to the decrease of the barotropic energy. See the
discussion section for a more complete analysis of the energy transfers of experiment T1. Also
notice that φψEψ (pink curve) is not transferring energy to Eψ, but instead taking energy from
it.

Figure 13b presents experiment T2, where the decrease in Eψ contributes both to the baro-
clinic geostrophic and wave modes. The sum of φEψ and WW Eψ still does most of the energy
transfer to the waves. It is the forcing term GGEψ that causes the transfer from Eψ to EG. The
mixed action of twomechanisms (Eψ → EW and Eψ → EG) that we see in the energy time series
(figure 11b) is easily identified here. On the bottom panel of figure 13b, the time evolution
of EG is plotted. ψW EG is doing some small-amplitude and low-frequency transfers between
waves and baroclinic geostrophic currents. During the first 20 inertial periods, it is ψW EG that
makes up the increase to EG. Afterwards, ψGEG kicks in and increases more significantly EG.
This term is complementary to GGEψ in the energy evolution equation of Eψ.

For experiment T3, figure 13c shows very clearly that when the typical scale of the back-
ground flow is smaller than the deformation radius, the baroclinic geostrophic energy increases
via ψGEG and the barotropic energy decreases via GGEψ. No energy is transfered to NIWs from
EG. We expect that if the simulation lasted long enough, EG would reach a plateau before going
back down, according to the process of barotropisation.
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(c) Experiment T3.

Figure 13: Balanced energy time series, reconstructed with the energy-evolution equations for
each mode.



Chapter 4

Discussion and Conclusion

4.1 Dipole experiments: comparison between models

We now will try to understand the similarities and differences between the two-layer shallow-
water model and the generalised-Lagrangian-mean model (glm) using experiments D1 and
D2. Experiment D1 is the original numerical experiment performed in XV. Although the
velocity fields produced by both models are virtually the same, the energy time series look
very different. In experiment D2, where the background flow is twice as strong, the two-layer
model gives results closer to those produced by the glmmodel. Wewill try to understand why.

Generalised-Lagrangian-mean model

In both D1 and D2, the glm model exhibits the "stimulated wave generation" identified by XV,
where the wave potential energy increases at the expense of the barotropic energy:

Eψ → EW
pot. (4.1)

Two-layer shallow-water model

Our two-layer model also is characterized by an increase of EW
pot, but energy is not coming only

and directly from Eψ. The two-layer framework allows the kinetic energy to change depending
on the interface deformation through the term EC. Our results with the two-layer model
(figures 5b, 7b) suggest that changes in EC are not negligible and have an appreciable impact
on the global energy budget.

Experiment D1, conducted with the two-layer model, significantly differs from the same
simulation made with the glm model (c.f. figure 5d). The two-layer model takes energy from
the wave kinetic energy to increase EW

pot. Transfers are such that

early on EW
kin → EW

pot , (4.2)

and later EW
kin ← Eψ . (4.3)

EC also varies in time, but with a lesser net impact on Eψ.

37
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Experiment D2 gives similar results with both models if we think of EC as an intermediary
between Eψ and EW

pot. Transfers are such that

early on EC
→ EW

pot , (4.4)

and later EC
← Eψ . (4.5)

We are led to a simple observation, common to every experiment: when the wave scale
shrinks, the wave potential energy has to go up. Where energy comes from seems to depend
on the strength of the background flow. With weaker flows, energy comes from the wave
kinetic energy, while with stronger flows, energy comes from the balanced flow after it was
first supplied by EC. We need to look more in details at EC in the energy-evolution equations.

EC as an intermediary

Figure 14 compares EC (gray) with the reconstructed energy time series φψEψ (pink) for ex-
periments D1 and D2. The two time series are broadly of opposite sign. It appears that φψEψt
might represent a forcing that would take energy from EC andwould give it to Eψ. We can even
identify a term in the time-evolution equation for EC that could be a complement of φψEψt . We
will use (2.47) for the evolution of Ut in Bernoulli-vorticity form. After integration by parts, we
will make use of the definition of Uφ to replace ηu in our expression. The algebra is below:

EC
t � + 2

H

"
Ut · ηu dx + ... (4.6)

� + 2
H

" (
−

1
2∇|U |

2
)
· ηu dx + ... using (2.47) (4.7)

� −
1
2

"
|U |2 ∇ ·

(
−

2
H ηu

)
dx + ... integration by part (4.8)

� −
1
2

"
|U |2 ∇ ·Uφ dx + ... using (2.23) (4.9)

This part of EC
t is cubic, where variables φ and ψ2 make up the total product. Recall that Uφ

is very small, therefore |U |2 ' |Uψ |
2. Because EC does not stem directly from an orthogonal

variable – it is more like a cross-term – we cannot write its energy contributions like forcingsEC.
We will simply define the energy-transfer term

(φψψ)EC
t ≡ −

1
2

"
|Uψ |

2
∇ ·Uφ dx , (4.10)

where the involved variables are between parenthesis as superscripts. (φψψ)EC
t is making up

most of EC in experiment D2 (red curve, figure 14b). From t � 0 to 15 inertial periods, (φψψ)EC
t

is forcing an extraction of energy from EC and giving it to Eψ. However, this forcing has no
net effect on Eψ – energy is directly sent to EW

pot. After t � 15 inertial periods, (φψψ)EC
t forces

EC back to its initial value, using the barotropic divergenceless energy, Eψ. Energy is then
effectively pumped from Eψ. We will consider that experiment D2 exhibits XV’s "stimulated
wave generation", with the only difference being that energy has to go through EC. We will
now try to understand why experiment D1 is not behaving the same.
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(a) Experiment D1. (b) Experiment D2.

Figure 14: Comparison between EC, φψEψ and (φψψ)EC.

In experiment D1 (figure 14a), EC and (φψψ)EC do not fit together after t � 5 inertial periods.
Notice that the EC time series is very noisy – the amplitude of high-frequency oscillations is
comparable to that of slow changes. It may be that the mechanism transferring energy from EC

to EW
pot is not strong enough to overwhelm other fast-timescale fluctuations in EC.
An hypothetical explanation for the difference between D1 and D2 would be that undula-

tions in the interface height field, η, have to be large for EC to change significantly. If so, EC can
give up some of its energy to increase the wave potential energy (D2, figure 7b). If not, because
advection and refraction by the background flow are too weak, the energy that increases EW

pot

comes from EW
kin instead of EC (D1, figure 5b). Since EW

kin varies, this breaks the wave action
conservation.

Breaking of the wave action conservation

The wave action conservation of which XV make use might be not as robust as they suppose.
One has to keep in mind that changes in wave action do not need to be large to balance the
increase in EW

pot. Wave action conservation requires the amplitude and phase of the wave to
change slowly in time and space. According to linear theory, the difference between u‖ and u⊥,
the amplitudes of NIWs along and across a background velocity gradient, should go like

u⊥
u‖

�

√
f0

f0 + ζ
. (4.11)

In experiment D1, ζ has a maximal amplitude of about f0/10, yielding u⊥/u‖ ' 0.95. This
small asymmetry between u⊥ and u‖ changes the oscillation amplitude on a fast time scale. It
weakly breaks the conditions for action conservation. It might be enough to cause a variation
in the wave action of 0.4% (EW

kin in figure 5). Even if this deviation from the conservation
law might seem small, it has the same order of magnitude than other terms in the energy
budget, and therefore is very significant. According to this argument, D2 would be even more
susceptible to break the action conservation. Nonetheless, the transfer from the balanced flow
takes over, in D2, and balances the increase in wave potential energy, maybe because of the
stronger deformation in η.
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4.2 Experiment T1: transfer from the background flow to the wave
potential energy

In the previous section, we saw that energy could be transferred from the balanced flow to
NIWs, with EC as an intermediary step. However, we did not pay much attention to the
mechanism extracting energy from NIWs. Experiment T1, in which energy goes from Eψ to
EW
pot, without going through EC, offers an insightful context to study this phenomenon.
In the following steps, we will need an expression for the baroclinic potential vorticity (PV).

To obtain it, we will subtract the shallow-water PV of each layer, q1,2 � ( f ∓ ζ2)(1/2 ∓ η̃)−1. We
then find

q2 − q1 �
ζ2 − 2 f η̃
1/4 − η̃2

, (4.12)

' ζ2 − 2 f η̃. (4.13)

Such a linearisation of the baroclinic PV is a very good approximation of the complete baroclinic
PV because the first order expansion of the denominator is zero. Recall from the derivation
of the Poincaré wave dispersion relation that the linear PV of IGWs is zero, i.e., ζW � 2 f η̃W .
Therefore, all the baroclinic PV is contained in mode G. Thus, qG corresponds to the baroclinic
linear PV:

qlinbc � qG ≡ ζG − 2 f η̃G . (4.14)

Recall that in all simulations (figures 9, 13), φEψt +WW Eψt ' 0. Wewill now showwhy, using
analytical methods. First, we will break down φEψt , c.f. (2.61), into three parts:

φwwEψt � f
"
∇ · (−2η̃W uW )ψ dx , (4.15)

φggEψt � f
"
∇ · (−2η̃GuG)ψ dx , (4.16)

φwgEψt � f
"
∇ · (−2η̃GuW − 2η̃W uG)ψ dx. (4.17)

Figure 15 plots the time evolution of Eψ for experiment T1 – just like 13a, but with φEψt broken
up into three parts. Inspection of the figure shows that it is only φwwEψt that balances out WW Eψt .
We will add their analytical formulations together:

WW Eψt + φwwEψt �

"
∇ · (ζW uW − 2η̃W uW )ψ dx (4.18)

�

"
∇ · (uW [ζW − 2η̃W ])ψ dx (4.19)

� 0 (4.20)

where we made use of the fact that waves contain no PV so that ζW � 2 f η̃W . Therefore,
quadratic wave terms have no net impact on Eψ. However, we will see they have an indirect
effect through the excitation of high-frequency baroclinic geostrophic currents.
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Figure 15: Experiment T1. Eψ time series, reconstructed with the energy-evolution equations
for each mode.

Figure 15 also reveals that φggEψt has a negligible amplitude. It is therefore φwgEψt thatmostly
contributes to the transfer of energy, together with WGEψ. We will add them together, and call
the sum ?Eψt , getting:

?Eψt �
WGEψt + φwgEψt (4.21)

�

"
∇ ·

(
ζGuW + ζW uG − 2 f η̃GuW − 2 f η̃W uG

)
ψ dx (4.22)

�

"
∇ ·

(
uW [ζG − 2 f η̃G] + uG[ζW − 2 f η̃W ]

)
ψ dx (4.23)

�

"
∇ ·

(
uW [qG] + uG[0]

)
ψ dx (4.24)

�

"
∇ · (qGuW )ψ dx. (4.25)

Figure 15 shows how ?Eψ (blue curve) gives a good estimate for the energy transfer Eψ − Eψini.
Another graph where ?Eψ is computed with q � ζ − 2 f η̃ (not shown) leads to the same
conclusion.

Therefore, the baroclinic geostrophic mode, through qG, has a very important role in the
energy transfer from the balancedmode to thewaves. Recall that there is basically no baroclinic
geostrophic energy, i.e. mode G is almost zero. These veryweak baroclinic geostrophic currents
are nonetheless essential to generate the energy transfer from the balanced flow to the waves.
The small amplitude of uG also makes clear that the energy transfer is a second order effect.
It is high-frequency and small-amplitude energy exchanges between waves and baroclinic
geostrophic currents that allows qG to contribute to the transfer Eψ → EW

pot.
In all experiments presented in this thesis, Eψ systematically goes down. From looking at
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Figure 16: Experiment T1. Time evolution of ζ and qG, late in the simulation. In the bottom
panels, values of qG/ f0 larger than 0.06 (smaller than −0.06) are shown in red (blue). x- and
y-axes correspond to the zonal and meridional directions, spanning 1500 km × 1500 km.

(4.25), it is not obvious why. We can propose a dynamical explanation for this phenomenon.
Recall that NIWs are concentrated in anti-cyclonic regions and expelled from cyclonic regions
(c.f. section 1.3). Therefore, where ψ is positive (anti-cyclone), the divergence of uW would be
negative. If we assume qG is positively correlated with ∇ · uW , the total product would yield a
negative?Eψt . It is not such a bad idea to think that qG might be correlatedwith∇ ·uW ; recall that
qG is generated by fast energy exchanges between modes G and W . Therefore, the baroclinic
PV would allow waves to extract energy form the barotropic flow. While waves change their
shape as they are concentrated to regions where the barotropic vorticity is negative, their scale
reduces (because their initial scale is larger than the features in the background flow). This
cascade stops when waves have the same length scale that the background flow, and so does
the energy transfer.

Figure 16 plots ζ and qG from experiment T1. As expected, qG (bottom panels) concentrates
in anti-cyclones (blue spots in top panels). Keeping in mind that the sign and shape of qG

changes quickly with time, we nonetheless have the impression that qG is more positive in
anti-cyclones, inspecting figure 16.

We still have not shown that it is the fast part of qG that generates the energy transfer.
According to the linear theory, the baroclinic geostrophic mode has only a slow-timescale evo-
lution, but with the full nonlinear model, it also has "unbalanced", fast-timescale, components.
Since qG would be a "residual" of waves, we can imagine it would evolve on a fast timescale.

Before continuing, we will do a small aside on how fast (F) and slow (S) variables behave
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Figure 17: Experiment T1. Reconstruction of ?Eψ, with various low-pass time filters applied
on qG.

when subject to multiplication. Two fast variables multiplied together go like

FF ∼ sin(ωt) sin(ωt) ∼ 1 + cos(2ωt) ∼ S + F, (4.26)

while a fast and a slow variable multiplied together give

FS ∼ sin(ωt) × 1 ∼ sin(ωt) ∼ F. (4.27)

A net transfer of energy is considered as a slow product. Most terms in the energy-evolution
equation for Eψ are cubic, like ?Eψt . Therefore, a forcing on Eψ can result from FFS ∼ (S+F) but
not from FSS ∼ F. Since uW is fast and ψ is slow, we expect that qG contains fast components.

To confirm this intuition, we applied low-pass time filters on qG, before computing ?Eψt
again. Figure 17 presents the results. When only the slowest frequencies of qG are kept, the
transfer tends to zero. It becomes significant only when frequencies are kept up to a value of
f0, or faster. Therefore, it is the fast part of baroclinic geostrophic currents that contributes to
the transfer between the barotropic flow and the waves.

4.3 Conclusion

In this thesis, some features of the interaction between NIWs and balanced flows were high-
lighted. Our framework, the two-layer shallow-water system, was complex enough to exhibit
some interesting properties of the dynamics, and simple enough for us to understand mecha-
nisms with compact expressions.

Our first conclusion is that our model was able to reproduce XV’s results in some numerical
experiments. XV’s glm model averages fast inertial motions in order to only keep track of the
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slow evolution of the flow, discarding wave phases. In an experiment where the background
flow is particularly weak, our two-layer model fails to reproduce XV’s results. We proposed
an explanation for this disaccord,: when the interface deformation is not large enough, it does
not allow the kinetic energy in the interface deformation field (EC) to fill the increase in wave
potential energy. Then, it is the wave kinetic energy that compensates for the increase in wave
potential energy, breaking the wave action conservation.

We have been able to express, with a convenient expression, how the balanced flow loses
energy to NIWs:

?Eψt �

"
∇ · (qGuW )ψ dx. (4.28)

In words, it means that the divergence of the flux of baroclinic PV by waves forces on the
barotropic streamfunction. Recall that NIWs concentrate in anti-cyclones, i.e. where ψ > 0. At
these locations, we can think that ∇ · (qGuW ) is negative, meaning that ∇ · (qGuW )ψ would also
be negative. Therefore, the integral would yield a negative value as waves are distorted by the
background flow and energy would go from the balanced mode to waves.

To complete the current investigation, we suggest some avenues: i) Fix a problem in the
two-layer model solver. Because the inverse Laplacian is computed in spectral space and the
normal Laplacian is computed in Cartesian space, a small disparity is found between those two
operations. Several robustness tests hint that this does not impact on results, but it is still an
annoyance. ii) Compare our results with a two-layer Boussinesq model where the interface is
fixed, but where buoyancy varies. We wonder if we would find the same energy transfer from
the balanced flow to the waves in this different formalism. The barotropic divergent mode φ
would be absent from the Boussinesq system, while it is very important in our model (recall
how the strong forcing WW Eψt is balanced out by φwgEψt ). On the other hand, the Boussinesq
model would allow for surface buoyancy variance, which is absent in shallow water. iii) Run a
forced-dissipative model where a baroclinically instable jet could exchange energy with waves,
in analogy to the Antarctic Circumpolar Current. This set-up would give insight on a more
realistic problem. iv) Perform a computation of ?Eψt in a climatic model. This endeavor would
demand great effort, but would probably give interesting results.
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